When Do We Need to Fine-Tune?

Fine-tuning is necessary when a general model doesn’t fit a specific domain...

It improves accuracy and relevance, especially for specialized applications...

Example in Python


  from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments

  tokenizer = AutoTokenizer.from_pretrained("gpt2")
  model = AutoModelForCausalLM.from_pretrained("gpt2")

  # Sample fine-tuning setup
  training_args = TrainingArguments(
      output_dir="./results",
      num_train_epochs=3,
      per_device_train_batch_size=4,
      save_steps=10_000,
      save_total_limit=2,
  )

  trainer = Trainer(
      model=model,
      args=training_args,
      train_dataset=my_train_dataset,
      eval_dataset=my_eval_dataset,
  )

  trainer.train()